Exchange Rate Disconnect in General Equilibrium

OLEG ITSKHOKI itskhoki@Princeton.edu

DMITRY MUKHIN mukhin@Princeton.edu

Kyiv School of Economics May 2017

- Exchange Rate Disconnect (ERD) is one of the most pervasive and challenging puzzles in macroeconomics
 - exchange rates are present in all international macro models
 - $-\!\!-$ yet, we do not have a satisfactory theory of exchange rates

- Exchange Rate Disconnect (ERD) is one of the most pervasive and challenging puzzles in macroeconomics
 - exchange rates are present in all international macro models
 - yet, we do not have a satisfactory theory of exchange rates
- Broader ERD combines five exchange-rate-related puzzles:
 - 1 Meese-Rogoff (1983) puzzle
 - NER follows a volatile RW, uncorrelated with macro fundamentals
 - PPP puzzle (Rogoff 1996) RER is as volatile and persistent as NER, and the two are nearly indistinguishable at most horizons (also related Mussa puzzle)
 - 3 LOP/Terms-of-Trade puzzle (Engel 1999, Atkeson-Burstein 2008) LOP violations for tradables account for nearly all RER dynamics ToT is three times less volatile than RER
 - Backus-Smith (1993) puzzle Consumption is high when prices are high (RER appreciated) Consumption is five times less volatile than RER
 - Forward-premium puzzle (Fama 1984)
 High interest rates predict nominal appreciations (UIP violations)

Data from World Bank Last updated: Jan 12, 2016

©2014 Google - Help - Terms of Service - Privacy - Disclaimer - Discuss

GBP/USD (GBPUSD=X) 1.3304 -0.0047 (-0.3499%) As of 10:16 AM EDT. CCY Delayed Price. Market open.

Our Approach

- The literature has tried to address one puzzle at a time, often at the expense of aggravating the other puzzles
- We provide a unifying theory of exchange rates, capturing simultaneously all stylized facts about their properties

Our Approach

- The literature has tried to address one puzzle at a time, often at the expense of aggravating the other puzzles
- We provide a unifying theory of exchange rates, capturing simultaneously all stylized facts about their properties
- A theory of exchange rate (disconnect) must specify:
 - 1 The exogenous shock process driving the exchange rate
 - little empirical guidance here
 - we prove theoretically that only the financial shock is a likely candidate and then show its quantitative performance
 - 2 The transmission mechanism muting the response of the macro variables to exchange rate movements relies on:
 - a) strategic complementarities in price setting resulting in PTM
 - b) weak substitutability between home and foreign goods
 - c) home bias in consumption
 - d) monetary policy rule stabilizing domestic inflation
 - all admitting tight empirical discipline
 - \rightarrow nominal rigidities are not essential

Contributions

- A dynamic general equilibrium model of exchange rate
 - fully analytically tractable, yet quantitative
- Four new mechanisms:
 - Equilibrium exchange rate determination and dynamics (cf. Engel and West 2005)
 - PPP puzzle and related puzzles (Rogoff '96, CKM '02, Kehoe and Midrigan '08, Monacelli '04)
 - **3** Backus-Smith puzzle
 - (cf. Corsetti, Dedola and Leduc 2008)
 - Forward premium puzzle (Engel 2016)

MODELING FRAMEWORK

Model setup

- Two countries: home (Europe) and foreign (US, denoted w/*)
- Nominal wages W_t in euros and W_t^* in dollars, the numeraires
- \mathcal{E}_t is the nominal exchange rate (price of one dollar in euros)
- Baseline model:
 - representative households
 - representative firms
 - o one internationally-traded foreign-bond
- We allow for all possible shocks/CKM-style wedges:

$$\mathbf{\Omega}_t = (w_t, \chi_t, \kappa_t, \mathsf{a}_t, \mathsf{g}_t, \mu_t, \eta_t, \xi_t, \psi_t)$$

and foreign counterparts

Equilibrium conditions

Households:

- (i) labor supply and asset demand show
- (ii) expenditure on home and foreign good **•** show
 - $-~\gamma$ expenditure share on foreign goods
 - heta elasticity of substitution between home and foreign goods

2 Firms:

- (i) production and profits show
- (ii) price setting show
 - lpha strategic complementarity elasticity in price setting
- 3 Government: balanced budget show
- ④ Foreign: symmetric show
- **5** GE: market clearing and country budget constraint

DISCONNECT IN THE LIMIT

Disconnect in the Autarky Limit

- Consider an economy in **autarky** = complete ER disconnect
 - (i) NER is not determined and can take any value
 - (ii) this has no effect on domestic quantities, prices or interest rates
 - (iii) as price levels are determined independently from NER, RER moves one-to-one with NER
- $+\,$ the further from autarky, the less likely the disconnect

▶ show

Disconnect in the Autarky Limit

- Consider an economy in **autarky** = complete ER disconnect
 - (i) NER is not determined and can take any value
 - (ii) this has no effect on domestic quantities, prices or interest rates
 - (iii) as price levels are determined independently from NER, RER moves one-to-one with NER
- + the further from autarky, the less likely the disconnect
- Definition: Exchange rate disconnect in the autarky limit

$$\lim_{\gamma \to 0} \frac{\mathrm{d} \mathbf{Z}_{t+j}}{\mathrm{d} \varepsilon_t} = \mathbf{0} \quad \forall j \qquad \text{and} \qquad \lim_{\gamma \to 0} \ \frac{\mathrm{d} \mathcal{E}_t}{\mathrm{d} \varepsilon_t} \neq \mathbf{0}.$$

Disconnect in the Autarky Limit

- Consider an economy in **autarky** = complete ER disconnect
 - (i) NER is not determined and can take any value
 - (ii) this has no effect on domestic quantities, prices or interest rates
 - (iii) as price levels are determined independently from NER, RER moves one-to-one with NER
- + the further from autarky, the less likely the disconnect
- Definition: Exchange rate disconnect in the autarky limit

$$\lim_{\gamma \to 0} \frac{\mathrm{d} \mathbf{Z}_{t+j}}{\mathrm{d} \varepsilon_t} = \mathbf{0} \quad \forall j \qquad \text{and} \qquad \lim_{\gamma \to 0} \ \frac{\mathrm{d} \mathcal{E}_t}{\mathrm{d} \varepsilon_t} \neq \mathbf{0}.$$

- **Proposition 1**: The model cannot exhibit exchange rate disconnect in the limit with zero weight on:
 - (i) LOP deviation shocks: η_t
 - (ii) Foreign-good demand shocks: ξ_t
 - (iii) Financial (international asset demand) shocks: ψ_t
- A pessimistic result for IRBC and NOEM models

Admissible Shocks

- Intuition: two international conditions
 - risk sharing: $\mathbb{E}_t \left\{ R_{t+1}^* \left[\Theta_{t+1}^* \Theta_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} e^{\psi_t} \right] \right\} = 0$
 - budget constraint: $B_{t+1}^* R_t^* B_t^* = NX^*(Q_t; \eta_t, \xi_t)$
- In the limit, shocks to these conditions have a vanishingly small effect, while other shocks still have a direct effect

Admissible Shocks

- Intuition: two international conditions
 - risk sharing: $\mathbb{E}_t \left\{ R_{t+1}^* \left[\Theta_{t+1}^* \Theta_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} e^{\psi_t} \right] \right\} = 0$

- budget constraint: $B_{t+1}^* - R_t^* B_t^* = NX^*(\mathcal{Q}_t; \eta_t, \xi_t)$

- In the limit, shocks to these conditions have a vanishingly small effect, while other shocks still have a direct effect
- **Proposition 2**: In the autarky limit, ψ_t is the only shock that simultaneously and robustly produces:
 - (i) positively correlated ToT and RER (Obstfeld-Rogoff moment)
 - (ii) negatively correlated relative consumption growth and real exchange rate depreciations (Backus-Smith correlation)
 - (iii) deviations from the UIP (negative Fama coefficient).
- $\Rightarrow \psi_t$ is the prime candidate shock for a **quantitative** model of ER disconnect

BASELINE MODEL

OF EXCHANGE RATE DISCONNECT

Ingredients

1 Financial exchange rate shock ψ_t only:

$$\dot{u}_t - \dot{u}_t^* - \mathbb{E}_t \Delta e_{t+1} = \psi_t$$

— persistent ($\rho \lesssim 1$, e.g. $\rho = 0.97$) w/small innovations ($\sigma_{\varepsilon} \gtrsim 0$): $\psi_t = \rho \psi_{t-1} + \varepsilon_t, \qquad \beta \rho < 1$

— important limiting case: eta
ho
ightarrow 1

Ingredients

1 Financial exchange rate shock ψ_t only:

$$\dot{a}_t - \dot{a}_t^* - \mathbb{E}_t \Delta e_{t+1} = \psi_t$$

— persistent ($ho \lesssim$ 1, e.g. ho = 0.97) w/small innovations ($\sigma_{arepsilon} \gtrsim$ 0):

$$\psi_t = \rho \psi_{t-1} + \varepsilon_t, \qquad \beta \rho < 1$$

— important limiting case: $\beta
ho
ightarrow 1$

2 Transmission mechanism

- (i) Strategic complementarities: $\alpha = 0.4$ (AIK 2015)
- (ii) Elasticity of substitution: $\theta = 1.5$ (FLOR 2014)

(iii) Home bias: $\gamma = 0.07 = \frac{1}{2} \frac{\text{Imp} + \text{Exp}}{\text{GDP}} \frac{\text{GDP}}{\text{Prod-n}}$ (for US, EU, Japan)

- Monetary regime: $W_t\equiv 1$ and $W_t^*\equiv 1$
- Other parameters:

$$\beta=\textbf{0.99},\quad \sigma=\textbf{2},\quad \nu=\textbf{1},\quad \phi=\textbf{0.5},\quad \zeta=\textbf{1}-\phi$$

Roadmap

- 1 Equilibrium exchange rate dynamics
- 2 Real and nominal exchange rates
- 3 Exchange rate and prices
- 4 Exchange rate and quantities
- **5** Exchange rate and interest rates

1

1 The international risk sharing condition:

$$\underbrace{i_t - i_t^*}_{\propto \gamma \psi_t} - \mathbb{E}_t \Delta e_{t+1} = \psi_t \quad \Rightarrow \quad \mathbb{E}_t \Delta e_{t+1} = -\frac{1}{1 + \gamma \lambda_1} \psi_t$$

2 Intertemporal budget constraint:

$$eta b_{t+1}^* - b_t^* = n x_t, \qquad n x_t = \gamma \lambda_2 \cdot e_t$$

1

1 The international risk sharing condition:

$$\underbrace{i_t - i_t^*}_{\propto \gamma \psi_t} - \mathbb{E}_t \Delta e_{t+1} = \psi_t \quad \Rightarrow \quad \mathbb{E}_t \Delta e_{t+1} = -\frac{1}{1 + \gamma \lambda_1} \psi_t$$

2 Intertemporal budget constraint:

$$eta b_{t+1}^* - b_t^* = n x_t, \qquad n x_t = \gamma \lambda_2 \cdot e_t$$

Proposition

When $\psi_t \sim AR(1)$, the equilibrium exchange rate follows ARIMA:

$$\Delta e_t = \rho \Delta e_{t-1} + \frac{1}{1+\gamma \lambda_1} \frac{\beta}{1-\beta \rho} \left(\varepsilon_t - \frac{1}{\beta} \varepsilon_{t-1} \right).$$

This process becomes arbitrary close to a random walk as $\beta \rho \rightarrow 1$.

- This is the unique equilibrium solution, bubble solutions do not exist

1

1 The international risk sharing condition:

$$\underbrace{i_t - i_t^*}_{\propto \gamma \psi_t} - \mathbb{E}_t \Delta e_{t+1} = \psi_t \quad \Rightarrow \quad \mathbb{E}_t \Delta e_{t+1} = -\frac{1}{1 + \gamma \lambda_1} \psi_t$$

2 Intertemporal budget constraint:

$$eta b_{t+1}^* - b_t^* = n x_t, \qquad n x_t = \gamma \lambda_2 \cdot e_t$$

Proposition

When $\psi_t \sim AR(1)$, the equilibrium exchange rate follows ARIMA:

$$(1-\rho L)\Delta e_t = \frac{1}{1+\gamma\lambda_1}\frac{\beta}{1-\beta\rho}\left(1-\frac{1}{\beta}L\right)\varepsilon_t.$$

This process becomes arbitrary close to a random walk as $\beta \rho \rightarrow 1$.

- This is the unique equilibrium solution, bubble solutions do not exist

1

1 The international risk sharing condition:

$$\underbrace{i_t - i_t^*}_{\propto \gamma \psi_t} - \mathbb{E}_t \Delta e_{t+1} = \psi_t \quad \Rightarrow \quad \mathbb{E}_t \Delta e_{t+1} = -\frac{1}{1 + \gamma \lambda_1} \psi_t$$

2 Intertemporal budget constraint:

$$eta b_{t+1}^* - b_t^* = n x_t, \qquad n x_t = \gamma \lambda_2 \cdot e_t$$

Proposition

When $\psi_t \sim AR(1)$, the equilibrium exchange rate follows ARIMA:

$$(1-\rho L)\Delta e_t = \frac{1}{1+\gamma\lambda_1}\frac{\beta}{1-\beta\rho}\left(1-\frac{1}{\beta}L\right)\varepsilon_t.$$

This process becomes arbitrary close to a random walk as $\beta \rho \rightarrow 1$.

- This is the unique equilibrium solution, bubble solutions do not exist
- NFA $\Delta b_{t+1}^* \sim AR(1)$: $\Delta b_{t+1}^* = \frac{\gamma \lambda_2}{1+\gamma \lambda_1} \frac{1}{1-\beta \rho} \psi_t$

Properties of the Exchange Rate

• Near-random-walk behavior (as $\beta \rho \rightarrow 1$):

1
$$\operatorname{corr}(\Delta e_{t+1}, \Delta e_t) \to 0$$

2 $\frac{\operatorname{var}(\Delta_k e_{t+k} - \mathbb{E}_t \Delta_k e_{t+k})}{\operatorname{var}(\Delta_k e_{t+k})} \to 1$
3 $\frac{\operatorname{std}(\Delta e_t)}{\operatorname{std}(\psi_t)} \to \infty$

PPP Puzzle

Proposition

RER and NER are tied together by the following relationship:

$$q_t = rac{1}{1+rac{1}{1-\phi}rac{2oldsymbol{\gamma}}{1-2\gamma}} e_t.$$

•
$$(q_t - e_t) \xrightarrow[\gamma \to 0]{} 0$$

• Relative volatility:
$$\frac{\operatorname{std}(\Delta q_t)}{\operatorname{std}(\Delta e_t)} = \frac{1}{1 + \frac{1}{1 - \phi} \frac{2\gamma}{1 - 2\gamma}} = 0.75$$

 Heterogenous firms and/or LCP sticky prices further increase volatility of RER

PPP Puzzle

• Real exchange rate:

$$\mathcal{Q} = \frac{P_t^* \mathcal{E}_t}{P_t}$$

1 either P_t and P_t^* are very sticky (+ monetary shocks); or **2** or economies are very closed, $\gamma \approx 0$ (+ ψ_t shocks)

PPP Puzzle

• Real exchange rate:

$$\mathcal{Q} = \frac{P_t^* \mathcal{E}_t}{P_t}$$

1 either P_t and P_t^* are very sticky (+ monetary shocks); or **2** or economies are very closed, $\gamma \approx 0$ (+ ψ_t shocks)

• Intuition (failure of IRBC and NOEM models):

$$p_{t} = (w_{t} - a_{t}) + \frac{1}{1 - \phi} \frac{\gamma}{1 - 2\gamma} q_{t}$$

$$p_{t}^{*} = (w_{t}^{*} - a_{t}^{*}) - \frac{1}{1 - \phi} \frac{\gamma}{1 - 2\gamma} q_{t}$$

$$\Rightarrow \qquad \left[1 + \frac{1}{1 - \phi} \frac{2\gamma}{1 - 2\gamma}\right] q_{t} = e_{t} + (w_{t}^{*} - a_{t}^{*}) - (w_{t} - a_{t}^{*})$$

Exchange Rates and Prices

• Three closely related variables:

$$Q_t = \frac{P_t^* \mathcal{E}_t}{P_t} \qquad Q_t^P = \frac{P_{Ft}^* \mathcal{E}_t}{P_{Ht}} \qquad \mathcal{S}_t = \frac{P_{Ft}}{P_{Ht}^* \mathcal{E}_t}$$

• Two relationships:

$$egin{aligned} q_t &= (1-\gamma) q_t^P - \gamma s_t \ s_t &= q_t^P - 2lpha q_t \end{aligned}$$

- In the data: $q_t^P \approx q_t$, $\operatorname{std}(\Delta q_t) \gg \operatorname{std}(\Delta s_t)$, $\operatorname{corr}(\Delta s_t, \Delta q_t) > 0$
- Proposition:

$$q_t^P = rac{1-2lpha\gamma}{1-2\gamma} q_t \quad ext{and} \quad s_t = rac{1-2lpha(1-\gamma)}{1-2\gamma} q_t$$

- conventional models with $\alpha = 0$ cannot do the trick - α needs to be positive, but not too large

Exchange Rates and Prices

Figure: Terms of trade and Real exchange rate

Backus-Smith puzzle

Static relationship between consumption and RER: • show

- (i) labor supply
- (ii) labor demand

$$\sigma \tilde{c}_t + \frac{1}{\nu} \tilde{y}_t = -\gamma q_t$$

(iii) goods market clearing: $ilde{y}_t = (1-2\gamma) ilde{c}_t + 2 heta(1-lpha)\gamma q_t$

• "Dismiss" asset market (Backus-Smith) condition:

$$\sigma \tilde{c}_t = q_t$$
 vs. $\mathbb{E}_t \{\Delta \tilde{c}_{t+1} - \Delta q_{t+1}\} = \psi_t$

Backus-Smith puzzle

- Static relationship between consumption and RER: show
 - (i) labor supply
 - (ii) labor demand

$$\sigma \tilde{c}_t + \frac{1}{\nu} \tilde{y}_t = -\gamma q_t$$

(iii) goods market clearing: $ilde{y}_t = (1-2\gamma) ilde{c}_t + 2 heta(1-lpha)\gamma q_t$

- "Dismiss" asset market (Backus-Smith) condition: $\sigma \tilde{c}_t = q_t$ vs. $\mathbb{E}_t \{ \Delta \tilde{c}_{t+1} - \Delta q_{t+1} \} = \psi_t$
- Proposition: Static expenditure switching implies:

$$c_t - c_t^* = -rac{2 heta(\mathbf{1}-oldsymbollpha)(1-\gamma) +
u}{(1-2\gamma) + \sigma
u}rac{2\gamma}{1-2\gamma}q_t$$

Backus-Smith puzzle

- Static relationship between consumption and RER: show
 - (i) labor supply (ii) labor demand $\left. \begin{array}{l} \sigma \tilde{c}_t + \frac{1}{\nu} \tilde{y}_t = -\gamma q_t \end{array} \right.$
 - (iii) goods market clearing: $\tilde{y}_t = (1 2\gamma)\tilde{c}_t + 2\theta(1 \alpha)\gamma q_t$
- "Dismiss" asset market (Backus-Smith) condition: $\sigma \tilde{c}_t = q_t$ vs. $\mathbb{E}_t \{ \Delta \tilde{c}_{t+1} - \Delta q_{t+1} \} = \psi_t$
- Proposition: Static expenditure switching implies:

$$c_t - c_t^* = -\frac{2\theta(1-\alpha)(1-\gamma) + \nu}{(1-2\gamma) + \sigma\nu} \frac{2\gamma}{1-2\gamma} q_t + \kappa(a_t - a_t^*)$$

• Three alternatives in the literature to get BS puzzle:

1 Super-persistent (news-like) shocks (CC 2013)

- 2 Low elasticity of substitution $\theta < 1$ (CDL 2008)
- 8 Non-tradable productivity shocks (BT 2008)

Figure: Exchange rate disconnect: relative consumption volatility

Exchange Rate and Interest rates

• Two equilibrium conditions:

 $\psi_t = (i_t - i_t^*) - \mathbb{E}_t \Delta e_{t+1}$ and $i_t - i_t^* = -\gamma \lambda_1 \mathbb{E}_t \Delta e_{t+1}$

Proposition

Fama-regression coefficient:

$$\mathbb{E}\{\Delta e_{t+1}|i_{t+1} - i_{t+1}^*\} = \beta_F(i_{t+1} - i_{t+1}^*), \qquad \beta_F \equiv -\frac{1}{\gamma \lambda_1} < 0.$$

In the limit $\beta \rho \rightarrow 1$:

- (i) Fama-regression $R^2 \rightarrow 0$
- (ii) $\operatorname{var}(i_t i_t^*) / \operatorname{var}(\Delta e_{t+1}) \to 0$
- (iii) $ho(\Delta e_t)
 ightarrow$ 0, while $ho(i_t i_t^*)
 ightarrow 1$
- (iv) the Sharpe ratio of the carry trade: $SR_C \rightarrow 0$ *carry trade return: $r_{t+1}^C = x_t \cdot (i_t - i_i^* - \Delta e_{t+1})$ with $x_t = i_t - i_i^* - \mathbb{E}_t \Delta e_{t+1}$

EXTENSIONS

Extensions

1 Monetary model with nominal rigidities and a Taylor rule

- different transmission mechanism
- similar quantitative conclusions for ψ_t shock
- Mussa puzzle
- 2 Multiple shocks:
 - productivity, monetary, foreign good and asset demand
 - variance decomposition: contribution of $\psi_t \approx 70\%$
- Financial model with noise traders and limits to arbitrage (De Long et al 1990, Jeanne and Rose 2002)
 - A model of upward slopping supply in asset markets with endogenous equilibrium volatility of ψ_t and Δe_{t+1}
 - Stationary model with similar small sample properties
 - Additional moments: the Engel (2016) "risk premium" puzzle

Monetary model

- Standard New Keynesian Open Economy model
- Baseline: sticky wages and LCP sticky prices
- Taylor rule: $i_t = \rho_i i_{t-1} + (1 \rho_i) \delta_\pi \pi_t + \varepsilon_t^m$
- New transmission: i_t does not respond directly to the ψ_t shock, but instead through inflation it generates
- Results:
 - 1 monetary shock alone results in numerous ER puzzles
 - 2 financial shock ψ_t has quantitative similar properties, with two exceptions:
 - $+ \,$ makes RER more volatile and NER closer to a random walk
 - RER is negatively correlated with ToT (see Gopinath et al)

Model comparison

		A: Single-shock models			B: Mu	B: Multi-shock models		
Moment	Data	Fin. s (1)	hock ψ (2)	NOEM (3)	IRBC (4)	NOEM (5)	IRBC (6)	Financial (7)
$\rho(\Delta e)$	0.00	-0.02 (0.09)	-0.03 (0.09)	-0.05 (0.09)	0.00 (0.09)	-0.03 (0.09)	-0.02 (0.09)	-0.01 (0.09)
ho(q)	0.95	0.93 (0.04)	0.91 (0.05)	0.84 (0.05)	0.93 (0.04)	0.93 (0.04)	0.93 (0.04)	0.93 (0.04)
$\sigma(\Delta q)/\sigma(\Delta e)$	0.99	0.79	0.97	0.97	1.64	0.98	0.94	0.76
$\operatorname{corr}(\Delta q, \Delta e)$	0.98	1	1	0.99	0.99	1.00	0.97	0.94
$\sigma(\Delta c - \Delta c^*) / \sigma(\Delta q)$	0.20	0.31	0.12	0.52	0.64	0.20	0.30	0.31
$\operatorname{corr}(\Delta c - \Delta c^*, \Delta q)$	-0.20	$^{-1}$	-0.95	1	1	-0.20 (0.09)	-0.20 (0.09)	-0.22 (0.09)
$\sigma(\Delta nx)/\sigma(\Delta q)$	0.10	0.26	0.17	0.08	0.14	0.32	0.30	0.10
$\operatorname{corr}(\Delta nx, \Delta q)$	≈ 0	1	0.99	1	1	-0.00 (0.09)	-0.00 (0.09)	-0.02 (0.09)
$\sigma(\Delta s)/\sigma(\Delta e)$	0.35	0.23	0.80	0.82	0.49	0.80	0.28	0.23
$\operatorname{corr}(\Delta s, \Delta e)$	0.60	1	-0.93	-0.96	0.99	-0.93	0.97	0.94
Fama β	$\lesssim 0$	-2.4 (1.7)	-3.4 (2.6)	1.2 (0.7)	1.4 (0.5)	-0.6 (1.4)	-0.7 (1.3)	-2.8 (3.5)
Fama R ²	0.02	0.03 (0.02)	0.03 (0.02)	0.03 (0.03)	0.09 (0.02)	0.00 (0.01)	0.00 (0.01)	0.01 (0.02)
$\sigma(i-i^*)/\sigma(\Delta e)$	0.06	0.07 (0.02)	0.05 (0.02)	0.14 (0.02)	0.21 (0.06)	0.06 (0.02)	0.08 (0.02)	0.03 (0.01)
$ ho(i-i^*)$	0.90	0.93 (0.04)	0.98 (0.01)	0.84 (0.05)	0.93 (0.04)	0.91 (0.04)	0.93 (0.04)	0.90 (0.04)
Carry SR	0.20	0.21 (0.04)	0.20 (0.04)	0	0	0.17 (0.06)	0.19 (0.06)	0.12 (0.07)

Variance decomposition

		NO	EM	IRBC		
Shocks		$var(\Delta e_t)$	$\operatorname{var}(\Delta q_t)$	$\operatorname{var}(\Delta e_t)$	$\operatorname{var}(\Delta q_t)$	
Monetary (Taylor rule)	ε_t^m	10%	10%	_	_	
Productivity	a _t	—	—	3%	9%	
Foreign-good demand	ξ_t	19%	20%	23%	39%	
Financial	ψ_t	71%	70%	74%	52%	

Mussa puzzle

		Model		
Moment	Data	(1)	(2)	
$\operatorname{std}(\Delta e_t)$	0.13	0.13	0.13	
$\operatorname{std}(\Delta q_t)$	0.26	0.18	0.16	
$\operatorname{corr}(\Delta q_t, \Delta e_t)$	0.66	0.79	0.84	
$\operatorname{std}(\Delta c_t - \Delta c_t^*)$	≈ 1	2.63	1.33	
$\operatorname{corr}(\Delta c_t - \Delta c_t^*, \Delta q_t)$	>0	-0.63	0.13	
Fama β	>0	-0.1	1.1	

Financial model

- Symmetric countries with international bond holding intermediated by a financial sector
- Three type of agents: $B_{t+1}^* + N_{t+1}^* + D_{t+1}^* = 0$
- Noise traders: $N^*_{t+1} = n \left(e^{\psi_t} 1
 ight)$
- Arbitrageurs: $\max_d \left\{ d \mathbb{E}_t \tilde{R}_{t+1} \frac{\omega}{2} \operatorname{var}_t (\tilde{R}_{t+1}) d^2 \right\}$, $\tilde{R}_{t+1}^* \equiv R_t^* R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}$ results in bond supply:

$$D_{t+1}^* = m rac{\mathbb{E}_t \tilde{R}_{t+1}}{\omega \operatorname{var}_t(\tilde{R}_{t+1})}$$

Generalized UIP condition:

$$\dot{\mu}_t - i_t^* - \mathbb{E}_t \Delta e_{t+1} = \chi_1 \psi_t - \chi_2 b_{t+1}, \quad \chi_1 \equiv \frac{n/\beta}{m/(\omega\sigma_e^2)}, \quad \chi_2 \equiv \frac{\bar{Y}}{m/(\omega\sigma_e^2)}$$

• Proposition: *e_t* and *q_t* follow an ARMA(2,1), but with the same near-random-walk properties.

Engel (2016) "risk premium" puzzle

Figure: Response of e_{t+j} to innovation in $i_t - i_t^*$

Engel (2016) "risk premium" puzzle

Figure: Projections on $i_t - i_t^*$

Conclusion

- Exchange rates have been very puzzling for macroeconomists
- We offer a unifying quantitative GE theory of exchange rates
- Which international macro results are robust?
 - Monetary policy transmission and spillovers: likely yes
 - Welfare analysis and optimal exchange rate regimes: likely no
- Our tractable macro GE environment can be useful for both:
 - 1 empirical/quantitative studies of ER and transmission
 - 2 financial models of exchange rates

APPENDIX

Puzzle Resolution Mechanism

▲ back to slides

Puzzle		Ingredients				
Meese-Rogoff, UIP	$\longrightarrow \Big\{$	persistent financial shockconventional Taylor rule	ψ_t			
PPP	+	• home bias	γ			
Terms-of-trade	+	• strategic complementarities	α			
Backus-Smith	+	 weak substitutability 	θ			

Puzzle Resolution Mechanism

back to slides

Puzzle		Ingredients			
Meese-Rogoff, UIP	$\longrightarrow \Big\{$	persistent financial shockconventional Taylor rule	ψ_t		
PPP	+	• home bias	γ		
Terms-of-trade	+	 strategic complementarities 	α		
Backus-Smith	+	 weak substitutability 	θ		

- Parameter restrictions:
 - **1** Marshall-Lerner condition: $\theta > 1/2$
 - **2** Nominal UIP: $\theta > IES$

New Mechanisms

- 1 Exchange rate dynamics:
 - \longrightarrow near random-walk behavior emerging from the intertemporal budget constraint under incomplete markets
 - \longrightarrow small but persistent expected appreciations require a large unexpected devaluation on impact
- 2 PPP puzzle
 - \longrightarrow no wedge between nominal and real exchange rates, unlike IRBC and NOEM models
- **3** Violation of the Backus-Smith condition:
 - $\longrightarrow\,$ we demote the dynamic risk-sharing condition from determining consumption allocation
 - \longrightarrow instead static market clearing determination of consumption
- **4** Violation of UIP and Forward premium puzzle:
 - \longrightarrow small persistent interest rate movements support consumption allocation, disconnected from volatile exchange rate
 - $\longrightarrow\,$ negative Fama coefficient, yet small Sharpe ratio on carry trade

Households

• Representative home household solves:

$$\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} e^{\chi_{t}} \left(\frac{1}{1-\sigma} C_{t}^{1-\sigma} - \frac{e^{\kappa_{t}}}{1+1/\nu} L_{t}^{1+1/\nu} \right)$$

s.t. $P_{t}C_{t} + \frac{B_{t+1}}{R_{t}} + \frac{B_{t+1}^{*}\mathcal{E}_{t}}{e^{\psi_{t}}R_{t}^{*}} \leq B_{t} + B_{t}^{*}\mathcal{E}_{t} + W_{t}L_{t} + \Pi_{t} + T_{t}$

• Household optimality (labor supply and demand for bonds):

$$\begin{split} e^{\kappa_t} C_t^{\sigma} L_t^{1/\nu} &= \frac{W_t}{P_t}, \\ R_t \mathbb{E}_t \left\{ \Theta_{t+1} \right\} &= 1, \\ e^{\psi_t} R_t^* \mathbb{E}_t \left\{ \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \Theta_{t+1} \right\} &= 1, \end{split}$$

where the home nominal SDF is given by:

$$\Theta_{t+1} \equiv \beta e^{\Delta \chi_{t+1}} \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}}$$

• Consumption expenditure on home and foreign goods:

$$P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$$

arises from a homothetic consumption aggregator:

$$C_{Ht} = (1 - \gamma)e^{-\gamma\xi_t}h\left(\frac{P_{Ht}}{P_t}\right)C_t,$$
$$C_{Ft} = \gamma e^{(1-\gamma)\xi_t}h\left(\frac{P_{Ft}}{P_t}\right)C_t$$

• The foreign share and the elasticity of substitution:

$$\gamma_t \equiv \frac{P_{Ft}C_{Ft}}{P_tC_t}\Big|_{\substack{P_{Ht}=P_{Ft}=P_t\\\xi_t=0}} = \gamma$$
$$\theta_t \equiv -\frac{\partial\log h(x_t)}{\partial\log x_t}\Big|_{x_t=1} = \theta$$

Production and profits

▲ back to slides

• Production function with intermediates:

$$Y_t = e^{a_t} L_t^{1-\phi} X_t^{\phi}$$
$$MC_t = e^{-a_t} \left(\frac{W_t}{1-\phi}\right)^{1-\phi} \left(\frac{P_t}{\phi}\right)^{\phi}$$

Profits:

$$\Pi_t = (P_{Ht} - MC_t)Y_{Ht} + (P_{Ht}^*\mathcal{E}_t - MC_t)Y_{Ht}^*,$$

where $Y_t = Y_{Ht} + Y_{Ht}^*$

• Labor and intermediate goods demand:

$$W_t L_t = (1 - \phi) M C_t Y_t$$

 $P_t X_t = \phi M C_t Y_t$

and fraction γ_t of $P_t X_t$ is allocated to foreign intermediates

• We postulate the following price setting rule:

$$P_{Ht} = e^{\mu_t} M C_t^{1-\alpha} P_t^{\alpha}$$
$$P_{Ht}^* = e^{\mu_t + \eta_t} (M C_t / \mathcal{E}_t)^{1-\alpha} P_t^{*\alpha}$$

• LOP violations:

$$\mathcal{Q}_{Ht} \equiv \frac{P_{Ht}^* \mathcal{E}_t}{P_{Ht}} = e^{\eta_t} \mathcal{Q}_t^{\alpha}$$

where the real exchange rate is given by:

$$\mathcal{Q}_t \equiv \frac{P_t^* \mathcal{E}_t}{P_t}$$

• Government runs a balanced budget, using lump-sum taxes to finance expenditure:

$$P_t G_t = P_t e^{\mathbf{g}_t},$$

where fraction γ_t of $P_t G_t$ is allocated to foreign goods

• The transfers to the households are given by:

$$T_t = \left(e^{-\psi_t} - 1\right) \frac{B_{t+1}^* \mathcal{E}_t}{R_t^*} - P_t e^{g_t}$$

• Foreign households and firms are symmetric, subject to:

 $\{\chi_t^*, \kappa_t^*, \xi_t^*, a_t^*, \mu_t^*, \eta_t^*, g_t^*\}$

- Foreign households only differ in that they do not have access to the home bond, which is not internationally traded.
 - As a result, their only Euler equation is for foreign bonds:

$$R_t^* \mathbb{E}_t \left\{ \Theta_{t+1}^* \right\} = 1, \qquad \Theta_{t+1}^* \equiv \beta e^{\Delta \chi_{t+1}^*} \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{P_t^*}{P_{t+1}^*}$$

- Labor market clearing
- 2 Goods market clearing, e.g.:

$$Y_{Ht}^{*} = \gamma e^{(1-\gamma)\xi_{t}^{*}} h(\frac{P_{Ht}^{*}}{P_{t}^{*}})[C_{t}^{*} + X_{t}^{*} + G_{t}^{*}]$$

3 Bond market clearing:

$$B_t = 0$$
 and $B_t^* + B_t^{*F} = 0$

4 Country budget constraint:

$$\frac{B_{t+1}^*\mathcal{E}_t}{R_t^*} - B_t^*\mathcal{E}_t = NX_t, \quad NX_t = P_{Ht}^*\mathcal{E}_tY_{Ht}^* - P_{Ft}Y_{Ft},$$

and we define the terms of trade:

$$\mathcal{S}_t \equiv \frac{P_{Ft}}{P_{Ht}^* \mathcal{E}_t}$$

Impulse responses

The figure plots $\frac{\partial z_t/\partial \varepsilon_t}{\partial e_t/\partial \varepsilon_t}$ for different values of γ , where $z \in \{p, c, y\}$ are different macro variables and $\varepsilon \in \Omega$ are different shocks

Microfoundations for ψ_t shock

Risk premium shock: $\psi_t = i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}$

back to slides

- 1 International asset demand shocks (in the utility function)
 - e.g., Dekle, Jeong and Kiyotaki (2014)
- 2 Noise trader shocks and limits to arbitrage
 - e.g., Jeanne and Rose (2002)
 - noise traders can be liquidity/safety traders
 - arbitrageurs with downward sloping demand
 - multiple equilibria \longrightarrow Mussa puzzle
- 8 Heterogenous beliefs or expectation shocks
 - e.g., Bacchetta and van Wincoop (2006)
 - huge volumes of currency trades (also order flows)
 - ψ_t are disagreement or expectation shocks
- 4 Financial frictions (e.g., Gabaix and Maggiori 2015)
- 6 Risk premia models (rare disasters, long-run risk, habits, segmented markets)

Properties of the Exchange Rate

back to slides

Figure: Impulse response of the exchange rate Δe_t to ψ_t

Properties of the Exchange Rate

back to slides

Figure: Contribution of the unexpected component (in small sample)

RER Persistence

Figure: Persistence of the real exchange rate q_t in small samples

Backus-Smith illustration

• back to slides

back to slides

• Labor Supply:

$$\sigma ilde{c}_t + rac{1}{
u} ilde{\ell}_t = -rac{1}{1-\phi} rac{\gamma}{1-2\gamma} q_t$$

- recall that: $p_t = w_t + \frac{1}{1-\phi} \frac{\gamma}{1-2\gamma} q_t$
- Labor Demand:

$$\tilde{\ell}_t = \tilde{y}_t + \frac{\phi}{1 - \phi} \frac{\gamma}{1 - 2\gamma} q_t.$$

• Goods market clearing:

$$\tilde{y}_t = \frac{\zeta}{\zeta + \frac{2\gamma}{1-2\gamma}} \tilde{c}_t + \frac{2\theta(1-\alpha)\frac{1-\gamma}{1-2\gamma} - (1-\zeta)}{\zeta + \frac{2\gamma}{1-2\gamma}} \frac{\gamma}{1-2\gamma} q_t$$

Exchange Rate and Interest Rate

Figure: Deviations from UIP (in small samples)

ER Disconnect: Robustness

back to slides

		Data	Baseline	Robustness					
		Data		$\theta = 2.5$	$\alpha = 0$	$\gamma = .15$	$\rho = 0.9$	$\sigma = 1$	
1.	$ ho(\Delta e)$	0.00	-0.02 (0.09)				-0.05		
2.	ho(q)	0.94	0.93* (0.04)				0.87		
	HL(q)	12.0	9.9* (6.4)				4.9		
	$\sigma(\Delta q)/\sigma(\Delta e)$	0.98	0.75			0.54			
2	$\sigma(\Delta s)/\sigma(\Delta q)$	0.34	0.30		1.16	0.46			
5.	$\sigma(\Delta q^P)/\sigma(\Delta q)$	0.98	1.10		1.16	1.26			
4.	$\sigma(\Delta c \!-\! \Delta c^*)/\sigma(\Delta q)$	-0.25	-0.31	-0.42	-0.42	-0.81		-0.48	
5.	Fama β_F	$\lesssim 0$	-8.1* (4.7)						
	Fama <i>R</i> ²	0.02	0.04 (0.02)				0.07		
	$\sigma(i\!-\!i^*)/\sigma(\Delta e)$	0.06	0.03 (0.01)						
	Carry <i>SR</i>	0.20	0.21 (0.04)				0.29		

Note: Baseline parameters: $\gamma = 0.07$, $\alpha = 0.4$, $\theta = 1.5$, $\rho = 0.97$, $\sigma = 2$, $\nu = 1$, $\phi = 0.5$, $\mu = 0$, $\beta = 0.99$. Results are robust to changing ν , ϕ , μ and β . *Asymptotic values: $\rho(q) = 1$, $HL(q) = \infty$, $\beta_F = -4.6$.

Mechanism

- **1** An international asset demand shock $\varepsilon_t > 0$ results in an immediate sharp ER depreciation to balance the asset market
- 2 Exchange rate then gradually appreciates (as the ψ_t shock wears out) to ensure the intertemporal budget constraint
- Sominal and real devaluations happen together, and the real wage declines
- Oevaluation is associated with a dampened deterioration of the terms of trade and the resulting expenditure switching towards home goods
- Consumption falls to ensure equilibrium in labor and goods markets
- 6 Consumption fall is supported by an increase in the interest rate, which balances out the fall in demand for domestic assets